Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, H; Xiao, X (Ed.)Differential privacy (DP) is applied when fine-tuning pre-trained language models (LMs) to limit leakage of training examples. While most DP research has focused on improving a model’s privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we extensively analyze the impact of DP on bias in LMs. We find differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is affected by both the privacy protection level and the underlying distribution of the dataset.more » « less
-
Wang, H. (Ed.)Once upon a time databases were structured, one size fitted all and they resided on machines that were trustworthy and even when they failed, they simply crashed. This era has come and gone as eloquently stated by Stonebraker and Cetintemel [16]. We now have key-value stores, graph databases, text databases, and a myriad of unstructured data repositories. The database community has wholeheartedly accepted the fact that the same information might come in different formats, modes and representations. We also accept that data might not be ”clean” and that data might need to be ”cleaned” due to the diverse sources of information. However, we, as a database community still cling to our 20th century belief that databases always reside on trustworthy, honest servers. Although the database community has always considered fault-tolerance as an integral building block of data management (remember ”D” in ACID is for Durability), we still have trouble accepting the fact that not all failures are simply crash failures and might in fact involve malicious and non-trustworthy infrastructure. This notion has been challenged and abandoned by many other Computer Science communities, most notably the security and the distributed systems communities. The rise of the cloud computing paradigm as well as the rapid popularity of blockchains demand a rethinking of our na¨ıve, comfortable beliefs in an ideal benign infrastructure. In the cloud, clients store their sensitive data in remote servers owned and operated by cloud providers. The Security and Crypto Communities have made significant inroads to protect both data and access privacy from malicious untrusted storage providers using encryption and oblivious data stores. The Distributed Systems and the Systems Communities have developed consensus protocols to ensure the fault-tolerant maintenance of data residing on untrusted, malicious infrastructure. However, these solutions face significant scalability and performance challenges when incorporated in large scale data repositories. Novel database designs need to directly address the natural tension between performance, fault-tolerance and trustworthiness. This is a perfect setting for the database community to lead and guide.more » « less
An official website of the United States government

Full Text Available